
Democratizing Far Edge Networking: Journey of Mainlining
Wired and Wireless in Linux Kernel

Robert Marko

Ideal software
stack

● Current stable kernel
● Current OpenWrt release or

distribution of choice
● No binary only drivers or tools
● Large selection of up-to-date

packages

Traditional
software stack

● Vendor provided reference SDK
● Usually based on old kernel versions
● Usually based on old OpenWrt

versions (AP)
● Potentially number of binary only

drivers or tools
● Outdated package versions, hard to

update
● Possible security vulnerabilities, hard

to mitigate

Upstream first development

● Approach targeting up-to-date
upstream projects

● Kernel
● Distribution (OpenWrt, Debian, etc.)
● Userspace tooling (systemd,

ModemManager, etc.)
● Upstreaming of features that may be

missing

Downsides of upstream first
development

● Usually takes longer for product to
hit the market

● Potential rework of existing work
required based on upstream
feedback

● Missing prerequisite features in
upstream that require development
first

Upsides of upstream first
development

● Public review of the code
● Feedback on aspects that can be

improved
● More eyes on the same code
● Availability of modern kernel

features
● Usually leads to simpler and cleaner

code

Tips for upstream first
development

● Development against linux-next
● Focus on sending small functional

patch series
● Start sending patches as early as

possible in the product development
● Try and avoid developing the whole

product stack before upstreaming

info@sartura.hr • www.sartura.hr

Our experiences
Qualcomm IPQ40xx WiSoC

Existing state of support

● Quad Core ARMv7 Cortex-A7 with integrated dual-band 802.11ac radios
● Was already present in OpenWrt but mostly downstream patches
● Partial support in upstream kernel
● WLAN was supported in upstream kernel
● No wired networking support in upstream kernel
● No upstream U-Boot support

Challenges when upstreaming

● No HW level documentation
● Existing OpenWrt patches were mostly partially up-ported vendor downstream drivers
● Significant amount of code and magic values was relevant to the pre-production silicon
● Unusual networking subsystem with no upstream support
● Vendor kernel publicly available though heavily modified kernel 4.4

Wired networking subsystem

Wired networking challenges

● Internal switch based on QCA8337N but modified so unsupported by qca8k
● Use of Qualcomm specific Penta SGMII link

○ Mostly undocumented UNIPHY that handles RGMII or PSGMII, plenty of magic values
○ PSGMII link requires calibration between the UNIPHY and PHY-s, no support for anything like this in the kernel

● Switch tag tightly coupled to the HW, sent via DMA descriptor directly
● Companion Qualcomm QCA8072/5 PSGMII PHY-s

○ They contain 2 or 5 identical PHY-s in the same package
○ But also always contain one PSGMII SerDes PHY which requires configuration
○ PHY package support was minimal in the kernel

Current kernel upstream status

● SoC support has been upstreamed into kernel with the following exceptions:
○ LCD support (Lack of any HW actually using it)
○ I2S/TDM support (Lack of any HW actually using it)
○ Wired networking

■ Qualcomm IPQ8072/5 companion PHY support was upstreamed
● Required expansion of the PHY package support

■ Upstreaming of the built-in ethernet controller and QCA8337N based switch was attempted
● As a separate ethernet and DSA drivers

○ qca8k driver was refactored to split out common code
○ Out of band tagging support was used

● As a single switchdev driver
○ Symbols were exported from the common qca8k code to try and avoid code duplication

● Both efforts stalled

Current U-Boot upstream status

● Single core mode support
● UART (Including debug UART)
● Full pinctrl and GPIO support
● SPI support (NOR and NAND)
● USB3.0 and USB2.0
● OF_UPSTREAM support (Using Linux DTS)
● Partial network support (Missing QCA8072/5 support only)

Notable peripherals missing:

● NAND (Parallel ONFI)
● eMMC/SDIO

Questions

